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Part I



1. OOD Detectors



Out-of-distribution (OOD) Data



Out-of-distribution (OOD) Data



Challenges
• Supervise only in-distribution data

• OOD data are in high dimensional space  



OOD Detection

Question: How to design the scoring function ?



Motivation: Output-Based
• Maximum Softmax Probability

Overlapped

A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks, ICLR 2017



Motivation: Output-Based
• ODIN (scaling)

• Input processing

• OOD Detector

Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks, ICLR 2018



Motivation: Output-Based
• Energy

Energy-based Out-of-distribution Detection, NeurIPS 2020



Comparison

• In distribution data: CIFAR-10

• OOD data: SVHN



Motivation: Distance-Based
• Mahalanobis distance

• Idea: Model feature space as a mixture of multivariate Gaussian

A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, NeurIPS 2018



Motivation: Outlier Exposure

• Outliers DOE as auxiliary training data

• During Inference: Detect whether a query is sampled from Din or DOE

• Training  Objective

Deep Anomaly Detection with Outlier Exposure, ICLR 2019



OOD Detection is mature

Generalized Out-of-Distribution Detection: A Survey 2023



Related Software

OpenOOD: Benchmarking Generalized Out-of-Distribution Detection, NeurIPS 2022

• OpenOOD



2. Attack on OOD Detectors



Adversarial OOD Data 

ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining, ECML 2021

Aim: Fool the detector



White-box attack
• L     Attack

• Valid： within pixel value range (0, 255]
• For MSP,  ODIN,  OE: 

• For Mahalanobis:



Black-box attack

Select with the one with 
the lowest OOD score

Benchmarking neural network robustness to common corruptions and perturbations, ICLR 2019



Inlier Attack

• Previous Attacks are on OOD data

• Adversarial In-distribution Data

• In-distribution ===> OOD



Motivation: Inlier Attack

• For softmax confidence measurement such as MSP, ODIN, OE, we 
let In-distribution data close to uniform distribution, and maximize 
the likelihood for OOD data.

Robust Out-of-distribution Detection for Neural Networks, AAAI 2022



Motivation: Inlier Attack

• For Mahalanobis distance measurement, we want to make the 
logistic regressor predict wrongly.

Robust Out-of-distribution Detection for Neural Networks, AAAI 2022



3. Defense on OOD Detectors



Motivation: Informative OOD Mining

ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining, ECML 2021



Adversarial Training

• Learning Objective

• GAN Training Objective

• Algorithm

ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining, ECML 2021



Defense for Inlier Attack
• Recall Inlier Attack:

• For Inlier Data, attack should bring down data log-likelihood  

• For OOD Data, attack should increase data log-likelihood

• Follow Adversarial Training Settings

Robust Out-of-distribution Detection for Neural Networks, AAAI 2022



Results: 

Robust Out-of-distribution Detection for Neural Networks, AAAI 2022



Part II



1.Graph OOD Detectors



GNN OOD Detection



GNN Baseline

• GCN

• Predictor 



GNNSafe (1) Data dependence

• Energy

• Free energy function 

• Loss Objective

Predictor



Motivation 1: Label Propagation 

• Problem: not all graph data are labeled

• Solution: Label Propagation, a non-parametric semi-supervised 
learning algorithm



GNNSafe (2) Label Propagation  

• Initialize Energy

• Belief Propagation

• Learning Objective



GNNSafe (3) Regularization

• Loss Objective

In distribution Out-of distribution



Motivation 2: Uncertainty Estimation

• Vacuity

• Dissonance

• Epistemic, Aleatoric and Entropy

refers to the Dirichlet strength

Uncertainty Aware Semi-Supervised Learning on Graph Data, NeurIPS 2020



Motivation 3: Posterior
• Low-dimensional Space Mapping

• Density measurement (pseudo-counts)

• Input-dependent param update

Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification, NeurIPS 2021



Motivation 4 Attention + Regularizer
• Attention Computation

• Learning Objective: Negative Loss-Likelihood

Learning on Graphs with Out-of-Distribution Nodes, KDD 2022



Motivation 4 Attention + Regularizer
• Consistency Regularizer

• W: OOD Score predicted by classifier

• E: OOD Score given by entropy

• Loss: 

Learning on Graphs with Out-of-Distribution Nodes, KDD 2022



Motivation 4 Attention + Regularizer
• Entropy Regularizer

• Loss:  

Learning on Graphs with Out-of-Distribution Nodes, KDD 2022



Motivation 4 Attention + Regularizer
• Discrepancy Regularizer

• Two-layer GCN Loss: 

• Total loss:  

Learning on Graphs with Out-of-Distribution Nodes, KDD 2022



Results

Learning on Graphs with Out-of-Distribution Nodes, KDD 2022



2. Attack and robustness on 
Graph OOD Detectors



Review Graph Attack

Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies, SIGKDD Explorations



Traditional Graph Attack

Bad

• To fool the classifier but not OOD detector

Good

• Can create OOD data from In-distribution data.



My Idea

1. Use graph attack to generate some OOD nodes from the original 
graph. 

2. Use Inlier / Outlier attack from ALOE to built adversarial samples

3. Test the robustness of OOD detectors such as GNNSafe.

4. Adversarial Training on graph OOD.



Any Question ?



Thanks !
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